The emergence of satellite technology has changed the lives of millions of people. In particular, GPS has brought an unprecedented level of accuracy to the field of geodesy. This text is a guide to the algorithms and mathematical principles that account for the success of GPS technology and replaces the authors' previous work, Linear Algebra, Geodesy, and GPS (1997). An initial discussion of the basic concepts, characteristics and technical aspects of different satellite systems is followed by the necessary mathematical content which is presented in a detailed and self-contained fashion. At the heart of the matter are the positioning algorithms on which GPS technology relies, the discussion of which will affirm the mathematical contents of the previous chapters. Numerous ready-to-use MATLAB codes are included for the reader. This comprehensive guide will be invaluable for engineers and academic researchers who wish to master the theory and practical application of GPS technology.
William Gilbert Strang (born November 27, 1934), usually known as simply Gilbert Strang or Gil Strang, is an American mathematician, with contributions to finite element theory, the calculus of variations, wavelet analysis and linear algebra. He has made many contributions to mathematics education, including publishing seven mathematics textbooks and one monograph. Strang is the MathWorks Professor of Mathematics at the Massachusetts Institute of Technology. He teaches Introduction to Linear Algebra and Computational Science and Engineering and his lectures are freely available through MIT OpenCourseWare.