Jump to ratings and reviews
Rate this book

Understanding Machine Learning

Rate this book
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.

414 pages, Hardcover

First published April 30, 2014

124 people are currently reading
1012 people want to read

About the author

Shai Shalev-Shwartz

2 books4 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
61 (46%)
4 stars
43 (32%)
3 stars
22 (16%)
2 stars
3 (2%)
1 star
2 (1%)
Displaying 1 - 8 of 8 reviews
Profile Image for Z. Aroosha Dehghan.
349 reviews89 followers
December 18, 2022
این کتاب خوبیه
اگر همزمان کلاس‌های شای بن دیوید تو یوتیوب رو هم ببینید خیلی بهتره.
همین کتاب رو تدریس می‌کنه
2 reviews1 follower
January 2, 2022
Definitely my machine learning bible. Far too many fields in this blossoming field have too much emphasis on the application and construction of algorithms and very few actually go in depth in the theory behind what makes a ML algorithm work. I would say every ML researcher should read this book once or at least have it as a reference.
Profile Image for Alireza Aghamohammadi.
52 reviews48 followers
July 8, 2021

مخاطب
کتاب درک یادگیری ماشین به مباحث نظری یادگیری ماشین می‌پردازد. مخاطبین این کتاب افرادی هستند که علاقمند به درک مباحث ریاضی پشت الگوریتم‌های یادگیری هستند.

محتوا
کتاب ابتدا با مفهوم یادگیری آغاز می‌کند و اینکه چطور می‌توان آن را به صورت احتمالی و محاسباتی بیان کرد. به همین منظور مدلی به نام Probably Approximately Correct یا همان PAC معرفی می‌کند. در باقی فصل‌های کتاب الگوریتم‌های یادگیری ماشین مانند درخت تصمیم، نزدیک‌ترین همسایه و ... را از منظر مدل PAC بررسی می‌کند.

یکی از بخش‌های جالب کتاب قضیه ناهار مجانی و اثبات آن بود و نتیجه‌ای که از آن می‌توان گرفت (حداقل در دنیای یادگیری ماشین):

There ain't no such thing as a free lunch

نویسنده دوم کتاب (بن دیوید) ویدیو‌های تدریس خود در دانشگاه واترلو را قرار داده است که از این لینک می‌توانید مشاهده کنید. البته ویدیوها فقط نیمه اول کتاب را در بر می‌گیرد.

جمع‌بندی
کتاب متن سلیسی دارد و خواندنش علی رغم ریاضیات سنگین آن برای بنده بسیار لذت‌بخش بود. اگر می‌خواهید درک عمیق‌تری نسبت به یادگیری ماشین داشته باشید، این کتاب فوق‌العاده است.

Profile Image for Aadesh.
185 reviews2 followers
January 13, 2021
Didn't get to finish all the chapters of the book in details but did read first few chapters minutely. The approach of the book was beneficial for me to grasp the concept of PAC and its implication in learning theory.
43 reviews2 followers
Read
April 3, 2021
Used for a class as supplementary material. Think it would have been too dense without the class, but I thought it did a great job of conveying the theory behind ML in a way that was not overly abstract.
Displaying 1 - 8 of 8 reviews

Can't find what you're looking for?

Get help and learn more about the design.