A number of monographs of various aspects of complex analysis in several variables have appeared since the first version of this book was published, but none of them uses the analytic techniques based on the solution of the Neumann Problem as the main tool. The additions made in this third, revised edition place additional stress on results where these methods are particularly important. Thus, a section has been added presenting Ehrenpreis' ``fundamental principle'' in full. The local arguments in this section are closely related to the proof of the coherence of the sheaf of germs of functions vanishing on an analytic set. Also added is a discussion of the theorem of Siu on the Lelong numbers of plurisubharmonic functions. Since the L 2 techniques are essential in the proof and plurisubharmonic functions play such an important role in this book, it seems natural to discuss their main singularities.
Lars Valter Hörmander (born 24 January 1931) is a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". He was awarded the Fields Medal in 1962, the Wolf Prize in 1988, and the Leroy P. Steele Prize in 2006. His Analysis of Linear Partial Differential Operators I–IV is considered a standard work on the subject of linear partial differential operators.
Hörmander completed his Ph.D. in 1955 at Lund University. Hörmander then worked at Stockholm University, at Stanford University, and at the Institute for Advanced Study in Princeton, New Jersey. He returned to Lund University as professor from 1968 until 1996, when he retired with the title of professor emeritus.