Jump to ratings and reviews
Rate this book

The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis

Rate this book
I. Test Functions.- Summary.- 1.1. A review of Differential Calculus.- 1.2. Existence of Test Functions.- 1.3. Convolution.- 1.4. Cutoff Functions and Partitions of Unity.- Notes.- II. Definition and Basic Properties of Distributions.- Summary.- 2.1. Basic Definitions.- 2.2. Localization.- 2.3. Distributions with Compact Support.- Notes.- III. Differentiation and Multiplication by Functions.- Summary.- 3.1. Definition and Examples.- 3.2. Homogeneous Distributions.- 3.3. Some Fundamental Solutions.- 3.4. Evaluation of Some Integrals.- Notes.- IV. Convolution.- Summary.- 4.1. Convolution with a Smooth Function.- 4.2. Convolution of Distributions.- 4.3. The Theorem of Supports.- 4.4. The Role of Fundamental Solutions.- 4.5. Basic Lp Estimates for Convolutions.- Notes.- V. Distributions in Product Spaces.- Summary.- 5.1. Tensor Products.- 5.2. The Kernel Theorem.- Notes.- VI. Composition with Smooth Maps.- Summary.- 6.1. Definitions.- 6.2. Some Fundamental Solutions.- 6.3. Distributions on a Manifold.- 6.4. The Tangent and Cotangent Bundles.- Notes.- VII. The Fourier Transformation.- Summary.- 7.1. The Fourier Transformation in ? and in ?'.- 7.2. Poisson's Summation Formula and Periodic Distributions.- 7.3. The Fourier-Laplace Transformation in ?'.- 7.4. More General Fourier-Laplace Transforms.- 7.5. The Malgrange Preparation Theorem.- 7.6. Fourier Transforms of Gaussian Functions.- 7.7. The Method of Stationary Phase.- 7.8. Oscillatory Integrals.- 7.9. H(s), Lp and Hölder Estimates.- Notes.- VIII. Spectral Analysis of Singularities.- Summary.- 8.1. The Wave Front Set.- 8.2. A Review of Operations with Distributions.- 8.3. The Wave Front Set of Solutions of Partial Differential Equations.- 8.4. The Wave Front Set with Respect to CL.- 8.5. Rules of Computation for WFL.- 8.6. WFL for Solutions of Partial Differential Equations.- 8.7. Microhyperbolicity.- Notes.- IX. Hyperfunctions.- Summary.- 9.1. Analytic Functionals.- 9.2. General Hyperfunctions.- 9.3. The Analytic Wave Front Set of a Hyperfunction.- 9.4. The Analytic Cauchy Problem.- 9.5. Hyperfunction Solutions of Partial Differential Equations.- 9.6. The Analytic Wave Front Set and the Support.- Notes.- Exercises.- Answers and Hints to All the Exercises.- Index of Notation.

456 pages, Paperback

First published May 1, 1983

36 people want to read

About the author

Lars Hörmander

29 books2 followers
Lars Valter Hörmander (born 24 January 1931) is a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". He was awarded the Fields Medal in 1962, the Wolf Prize in 1988, and the Leroy P. Steele Prize in 2006. His Analysis of Linear Partial Differential Operators I–IV is considered a standard work on the subject of linear partial differential operators.

Hörmander completed his Ph.D. in 1955 at Lund University. Hörmander then worked at Stockholm University, at Stanford University, and at the Institute for Advanced Study in Princeton, New Jersey. He returned to Lund University as professor from 1968 until 1996, when he retired with the title of professor emeritus.

http://en.wikipedia.org/wiki/Lars_Hör...

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
5 (50%)
4 stars
4 (40%)
3 stars
1 (10%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 - 2 of 2 reviews
14 reviews
Want to read
October 22, 2023
En la sección de distribuciones con soporte compacto se menciona que que distribuciones con soporte compacto, pueden ser definidas sobre funciones suaves. (Sección 2.3)
150 reviews
Want to read
December 23, 2023
En la sección de distribuciones con soporte compacto se menciona que que distribuciones con soporte compacto, pueden ser definidas sobre funciones suaves. (Sección 2.3)


En uno de los volúmenes, se menciona la técnica de congelamiento de los coeficientes en un operador de coeficiente variable. Por otro lado, es un ejercicio clásico en un curso básico de física, estudiar: si perforamos el planeta tierra desde un punto A a otro punto B: ¿cómo se comporta un objeto al dejarlo caer por uno de estos puntos? Se suele sugerir al estudiante: Asuma que el planeta no gira.
¿Es posible pensar este supuesto como una técnica de congelamiento?
Displaying 1 - 2 of 2 reviews

Can't find what you're looking for?

Get help and learn more about the design.