This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: First-order equations: separable, linear, autonomous, and bifurcation phenomena; Second-order linear homogeneous and non-homogeneous equations; Laplace transforms; and Linear and nonlinear systems, and phase plane properties.
Introdução bem gentil às equações diferenciais ordinárias. Agora sinto que tenho uma noção bem melhor sobre EDOs de primeira e segunda ordem. O capítulo sobre a transformada de Laplace foi completamente novo para mim. Como economista, achei ruim que a maioria dos exemplos eram sobre física e engenharia, mas também há exemplos de demografia que achei bem interessantes.
Fiquei bem satisfeito com a leitura e espero entender melhor agora cálculo de variações e teoria do controle ótimo. A ver.