Jump to ratings and reviews
Rate this book

Improved FP Growth Algorithm for Mining Association Rules

Rate this book
Mining frequent patterns (itemsets) plays an important role of in discovering association rules. However, finding frequent itemsets is most expensive step in the process of association rule mining. Very often algorithms to find frequent itemsets need multiple database scans creating a bottle-neck to achieve efficiency. To avoid this bottle-neck the objective has been to reduce database scans. In the past, Apriori-like methods were adopted to mine frequent itemsets. But these approaches are inefficient as they require multiple database scans and iteratively check a large set of candidates by pattern matching. A compact structure, called FP-Tree, was developed to improve the disadvantages of Apriori-like algorithms. By FP-Growth approach, we can facilitate mining frequent itemsets. This book proposes an Improved FP-Growth algorithm that scans database only once for association rule mining. The original FP-Growth algorithm scans datasets twice. First time, scanning database to find the frequent 1-itemsets, and sorting the 1-itemsets in the descending order of support and second time it scans the database again to construct FP-tree.

56 pages, Paperback

Published June 26, 2017

About the author

Kuldeep Singh

125 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.